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ABSTRACT: Genome engineering technologies now enable
precise manipulation of organism genotype, but can be limited
in scalability by their design requirements. Here we describe
Merlin (http://merlincad.org), an open-source web-based tool
to assist biologists in designing experiments using multiplex
automated genome engineering (MAGE). Merlin provides
methods to generate pools of single-stranded DNA oligonu-
cleotides (oligos) for MAGE experiments by performing free
energy calculation and BLAST scoring on a sliding window
spanning the targeted site. These oligos are designed not only
to improve recombination efficiency, but also to minimize off-
target interactions. The application further assists experiment
planning by reporting predicted allelic replacement rates after
multiple MAGE cycles, and enables rapid result validation by generating primer sequences for multiplexed allele-specific colony
PCR. Here we describe the Merlin oligo and primer design procedures and validate their functionality compared to OptMAGE
by eliminating seven AvrII restriction sites from the Escherichia coli genome.
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Multiplex automated genome engineering (MAGE)1 is a
genome editing technique that utilizes homologous

recombination proteins originally isolated from phage λ to
achieve scarless incorporation of synthetic ssDNA oligonucleo-
tides (oligos) into a bacterial genome.2−5 These oligos consist of
90 nucleotides, with mutations in the central region flanked by
5′ and 3′ homology to the target site. Once introduced into the cell
by electroporation, oligos bind the λ-beta protein. Data suggests
these oligos then anneal to the lagging strand of the replicating
bacterial chromosome and introduce the mutation.6 Subsequent
rounds of replication stably fix the mutation.MAGE has been used
to construct highly modified organisms,7−10 inducing genomes
with multiple short (1−60 bp) specific sequence changes (i.e.,
mismatch, deletion or insertion) at many targeted loci (>300).
Alternatively, a pool of degenerate oligonucleotide sequences can
be used to create diverse populations and explore a large genotypic
landscape. However, genome modification efforts that aim to accu-
mulate many (>100) mutations in a single genome require exten-
sive time to design and multiple successive MAGE cycles and
would benefit from robust automated solutions.
Computer-aided design software plays an important role in

synthetic biology.11 Many seemingly straightforward tasks such

as designing PCR primers or creating MAGE oligos with the
modified bases at a predetermined position can be performed
“well enough” by hand, yielding results with suboptimal designs
and saving effort at the cost of efficiency and, ultimately, turn-
around time. Automated processes allow design decisions to be
reproduced, archived, standardized, and shared, easing the
integration of new techniques or insights as they become available.
By incorporating tools into the experiment design pipeline such as
thermodynamic modeling, off-target interaction prediction, and
result simulation, we can provide a framework to help guide the
design process. Merlin is built with the intention of increasing the
rigor applied to oligo design in order to improve performance
without requiring extra effort on the user’s part.
Merlin provides an integrated software environment for the

design of MAGE experiments which replaces manual oligo design
processes, provides additional validation utilities, and is open source
and extensible to allow for community development (Figure 1).
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While Merlin is not the first software tool for MAGE oligo
design, the approach we have taken is to fulfill the needs of an
experimentalist as opposed to a bioinformatician by removing
typical obstacles to the adoption of CAD software (e.g., pro-
gramming language requirements, monetary cost, and limited or
specific functionality). The user interface is designed to guide
users through the considerations in the process of creating oligos
by presenting recommended parameters that the user may
modify. Modified parameter files can be exported to preserve a
record of the settings used, and uploaded in order to recreate
experiments with the same parameters. Each optimized oligo is
presented with details summarizing why its specific location on
the target genome was selected by showing the folding energy of
every possible oligo spanning the same locus as well as the
relative likelihood of off-target interactions as determined by
BLAST. A model for the expected allelic replacement rate after
each MAGE cycle is included to allow the user to estimate how
many cycles are required to create a population of the desired
diversity, or to calculate how many colonies should be screened
to find a sample with the desired number of alterations.
To support projects in which distinct genomic regions are modi-
fied by MAGE and will be combined by conjugative assembly
genome engineering (CAGE), Merlin is capable of generating
primer sequences for dsDNA cassettes to be used in the CAGE
procedure.12 Finally, Merlin can create sets of MASC-PCR
primers to enable rapid screening of the modified genomes that
are produced.
MAGE experiments typically consist of multiple cycles of trans-

formation to introduce the mutagenic oligo pool into the cell.
Merlin is capable of creating visualizations based on the calculated
probability of each oligo becoming incorporated in the target
genome for each cycle (Figure 2). These statistics are useful for
predicting howmany cycles will be necessary to create a population

with a specific diversity ofmodifications, or howmany cycles will be
needed to produce an organism that is modified at all target sites.
Multiplexed allele-specific colony PCR allows for simulta-

neous screening of short mutations at many nonoverlapping loci
in a single PCR reaction by generating DNA fragments of
different sizes for each locus.7 The size of these fragments is set
such that each can be easily distinguished, producing distinct
genotypic “barcodes” on a gel. This technique is valuable for
reducing themanual labor and expenses involved in interrogating
multiple genome modification events. Generating a set of primers
for wild-type and mutant genotypes of each target can be tedious,
particularly when screening for short sequence changes where the
melting temperature of all primers should ideally be within 1.5 °C.
Melting temperatures can be adjusted by shifting the location of a
primer or by changing its length, but doing so manually may
require hours of trial and error. Merlin is capable of generating
these primer sets automatically, with PCR product lengths defined
by the user. For discussion of the algorithm used to create primers,
refer to the Methods.
A well-described approach7,12 to large-scale genome engineer-

ing, conjugative assembly genome engineering (CAGE), involves
targeting distinct genomic regions in parallel experiments then
assembling a chimeric genome from multiple mutant strains.
Because MAGE and CAGE are closely associated, Merlin has
been built with the capability to generate sequences for the sets of
primers for dsDNA cassettes that are necessary for the recombin-
eering of selectable markers used in CAGE. The user is prompted
to provide the DNA sequence of the selectable marker they wish
to integrate into the donor genome and the start and end posi-
tions of the desired replacement on the currently loaded recipient
genome. Merlin then generates 60 bp primer sequences for the
selectable marker cassette with overhangs for integration into the
appropriate site in the donor genome, enabling integration of the

Figure 1. Illustration of howMerlin assists in all phases of the biodesign automation framework.11 Specific tasks reflect changes in our own workflow due
to computer-aided design. Notable modifications to the Specify phase include removing the need to manually edit parameter files and interact with the
command-line OptMAGE script. The Design phase is improved by removing the need to edit sequences by hand. Oligo efficiency prediction informs
how many MAGE cycles will be run between screening steps. Finally, automatic generation of MASC-PCR primers removes the need for tedious
trial-and-error to assemble a set of primers with an acceptable range of melting temperatures.
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Figure 2.Graphical output as generated byMerlin showing results for oligo replacement rate calculations displayed in two different formats for the same
experiment. Left: Genotypic diversity expressed as percent of the bacterial population expected to have 0 through n modifications after each MAGE
cycle. A mouseover tooltip (not shown) displays the calculated percentage and the number of modifications for each segment. n = 7, segments are
stacked in ascending order with orange depicting 0 modifications, green depicting 1, et cetera. Right: Predicted likelihood of detecting a bacterium that
has incorporated all oligos after each cycle if 96 colonies are screened.

Figure 3.Oligos designed viaMerlin and OptMAGE generate similar mutation diversity. (A) Population diversity over 15 MAGE cycles as expected by
Merlin’s ARE prediction model (left) and using oligos generated byMerlin (center) and OptMAGE (right). (B) Allelic replacement rates for each oligo
show greater variation between loci than would be expected from the calculated ΔG. This suggests that specific structural features or genomic context
may play a role in determining the likelihood of recombination. Allelic replacement rates are measured using validated MASC-PCR primers generated
by Merlin. Comparable results were observed after 3 cycles (Figure S2). Error bars are the range of values for two separate populations. n = 47.
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marker into the donor genome and subsequent merging of donor
and recipient genome via CAGE.7,12

To test Merlin’s design capabilities, we used MAGE oligos
designed by both the Merlin algorithm and Merlin’s integrated
version of the OptMAGE script1 and PCR primers generated by
Merlin to induce and assay for modifications in a population over
multiple MAGE cycles. We created oligos targeting seven of the
16 AvrII restriction sites, then used these to perform 15 rounds of
MAGE in the mutS knockout E. coli strain EcNR2.1 We first
validated the MASC-PCR primers from the Merlin algorithm by
performing three cycles of MAGE with Merlin oligos and then
assaying forty-eight clones with MASC-PCR primers and Sanger
sequencing (Figure S1). Results were identical for each data
set, demonstrating the accuracy of the MASC-PCR primers
(Table S1). We then assayed the diversity in Merlin and
OptMAGE populations at cycles three, six, nine, 12, and 15 in
two duplicate populations using MASC-PCR. Overall, we found
that both Merlin and OptMAGE generate similar population
diversity over multiple cycles, indicating that overall efficiency
was similar for oligos designed from both Merlin and OptMAGE
and validating the Merlin oligo design algorithm (Figure 3A).
In each case, a significant portion of the population did not

acquire mutations at any of the targeted loci. Several explanations
for this phenomenon are possible, making further study into the
MAGE process necessary before it can be incorporated into
the model. MAGE modification may not be fitness-neutral as we
assume when creating intergenic or silent mutations, leading to
slower replication inmutants relative to the unmodified population.
Alternatively, there may be a distinct subpopulation of mutant cells
with reduced competency for oligo uptake. It should be noted that
Pośfai et al. observed increased competency for DNA uptake in
E. coli strains modified to lack insertion sequence elements and
prophages in their genomes, suggesting a genetic component to
competency.13

To further compare the Merlin and OptMAGE design
algorithms, we examined the efficiency of specific oligos. For
most sites, rates of mutagenesis were similar for both Merlin and
OptMAGE oligos. However, we found that the OptMAGE oligo
demonstrated greater efficiency than the Merlin oligo at target
site two (AvrII02) (Figure 3). The AvrII02 OptMAGE oligo
(AvrII02-Opt) generated mutations in up to 35% of the cell
population while the Merlin oligo (AvrII-Mer) generated
mutations in up to 18% of the cell population (Figure 3B).
This difference cannot be explained by the free energy value of
the oligos, as the Gibbs free energy of the OptMAGE oligo
was calculated to be −8.08 kcal/mol and the free energy of
the Merlin oligo was −11.30 kcal/mol; both are well within the
acceptable range for MAGE oligos. We examined the structure
of both oligos using the RNAFold program from the Vienna-
RNA package with the included Mathews model for DNA
energy parameters14 and found two potential factors that
may explain this result: (i) A 5′ stem loop in AvrII02-Mer, and
(ii) A 3′ stem loop in AvrII02-Opt (Figure S4). Both loops are
present in each oligo, but their relative positions to the ends of
the oligos are noteworthy; either may have an impact on ARE.
Because of the implication that free energy scores do not
reflect the full impact of oligo folding on MAGE efficiency,
these factors may inform future improvements to the Merlin
optimization algorithm.

■ METHODS
Oligo Design. The Merlin algorithm for generating an oligo

pool from a list of target locations on the genome is as follows.

Required inputs for each individual oligo are the start and end
(inclusive) positions xstart and xend of the modification on the
genome, the replichore (1 or 2) and strand (+ or −) on which the
target is located, the mutation type (insertion, deletion, or
mismatch), and the sequence s′ for a mismatch or insertion
mutation. Global parameters for all oligos are the genome
sequence S, the oligo length l, the minimum number of un-
modified nucleotides that buffer the ends of an oligo b3′ and b5′,
and the Gibbs free energy threshold Gt above which secondary
structures in the oligonucleotides are not expected to interfere
with binding. Subsequences will be denoted S[start,end]with
both positions inclusive.
ΔG is calculated by RNAFold in the ViennaRNA package with

the arguments “-P dna_mathews.par−noconv−noPS”.14 bitscore
and evalue are calculated from blastn with arguments “-word_size
11 -evalue 10”.

1. If type is insertion ormismatch, orient the target so the oligo
will match the sequence of the lagging strand during
replication.
1.a. If {(replichore =2)&(strand = “−″)} or {(replichore =

1) & (strand = “+″)}: s′ = ReverseComp(s′)
2. Isolate the window of nucleotides that can be considered

for inclusion in the oligo.
2.a. spre = S[xstart − 1 − l + |s′| + b3′, xstart − 1]
2.b. spost = S[xend + 1, xend + 1 + l − |s′| − b5′]

3. Reorient the pre- and postsequence to place them on
the lagging strand.
3.a. If (replichore = 1):

3.a.i. spre = ReverseComp(spre + spost) [1,|spost|]
3.a.ii. spost = ReverseComp(spre + spost) [|spost| + 1,

|spre + spost|]
4. View a sliding window across the assembled sequence and

assign scores.
4.a. Initialize two vectors of length l: the free energy

score E and the BLAST result score against the
input genome B for each position.

4.b. For all s = (spre + s ′+ spost) [i,i + l] where i ∈1···|spre|:
4.b.i. If G(s) > Gt: E[i] = 0
4.b.ii. Else E[i] = −G(s)

4.c. B[i] = bitscore(s) *e−e‑value(s)

5. Select an optimized oligo by first selecting the oligos with
the lowest free energy score, then choosing any oligo from
that set that minimizes the BLAST score.
5.a. j ⃗⊂ {1···l}s.t. ∀j: E[j] = min(E)
5.b. k ∈ j ⃗ s.t. B[k] = min(B[ j ⃗])
5.c. sopt = (spre + s′ + spost) [k,k + l]

This method is an improvement on OptMAGE by virtue of
calculating values for all possible oligos, as well as by the addition
of the BLAST step. The Merlin interface graphically reports the
free energy and sequence homology results for every potential
position, highlighting the difference between each Merlin oligo
and its OptMAGE-produced counterpart targeting the same
locus (Figure S3).

Oligo Efficiency Prediction. The allelic replacement effi-
ciency (ARE) over multiple cycles can be modeled as a Poisson
binomial distribution in cases where modifications are occurring at
discrete sites.15 The averageARE is determined, thenmodified by an
empirically determined “pooling factor” that accounts for decreased
efficiency proportional to increasing complexity in the oligo pool.
The prediction function for individual oligo AREs is based on

fitting empirical data from previous studies1,15 with parameters
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that vary by the modification type. The equation used is of the
form

̂ = * α −eARE RE l
0

( 1)

where l is the length of the insertion or deletion or the number
of of modified bases in a mismatch mutation, and RE0 and α
correspond to the modification type as in Table 1.

As the number of distinct oligo sequences included in the pool
increases, the ARE of each individual oligo decreases. This “pooling
factor” accounts for oligo-to-oligo interactions and the relative
dilution of each sequence in a fixed number of oligos by reducing
each ARE with the formula15

̂ = ̂ * − −eARE ARE (1 )p
n1.59/

where n is the number of oligos in the pool. Using the ARE as the
percent likelihood of an oligo being incorporated in a singleMAGE
cycle, and on the assumption that each consecutive cycle can be
considered an independent trial, the probability of a given oligo
being incorporated after c cycles is

= − − ̂P 1 (1 ARE )p
c

The above can nowbe used to calculate the expected distribution of
oligo integration after a number of cycles as a percentage of the total
cell population. The full equation for the probability mass function
of the Poisson binomial distribution is given as

= = Σ Π Π −∈ ∈ ∉P K k P P( ) (1 )A F i A i j A jk

This equation may be used to determine the percentage of the
population expected to have kmodifications, where Fk is the set of
all sets of size k of nonoverlapping oligos. It should be noted that in
practice the size of Fk grows quickly with increasing n, so Merlin
instead incorporates a method to iteratively combine the individual
predicted AREs of each oligo after each cycle (see the next section).
Population Diversity Prediction from AREs. The

algorithm Merlin uses to construct a data table showing the frac-
tion of the population expected to incorporate k out of n oligos
through C cycles is as follows:

1. Initialize an n + 1 by C table T
2. Set the last column T(1,C) = 1, all other values = 0
3. For c ∈{1,...,C}, k ∈{2,...,n + 1}, j ∈{k,...,2}:

3.a. Calculate the pooled ARE for the kth oligo as de-
scribed above and find the probability p of incorpo-
ration after c MAGE cycles
3.a.i. AR̂Ep = (RE0 * eα (l−1)) * (1 − e−1.59/n)
3.a.ii. p = 1 − (1 − AR̂Êp)

c

3.b. Set T( j,c) = T(j,c) + T(j − 1,c) * p
3.c. Set T(i,c) = T(i,c) * (1 − p) where 1 ≤ i < j

MASC-PCR Primer Optimization. In a multiplexed PCR
reaction, it is important that the melting temperature of each
primer is the same. In general, all temperatures should be within
a 1.5 °C range as further deviation will make single base pair
changes difficult to detect.
Merlin predicts melting temperatures using the BioPython

Bio.SeqUtils.MeltingTemp module.16 The user is prompted to

provide ion and nucleotide concentrations matching their
preferred PCR protocol, as well as to define howmuch variability
should be allowed in primer size and the length of the resulting
DNA fragments.
Instead of discussing the “upstream” and “downstream” PCR

primers, it is convenient to consider the “targeted region” and
“nontargeted region” primers instead. The primers in the
nontargeted region fall outside of the sequence covered by the
MAGE oligos since typical oligo size is shorter than the smallest
recommended amplicon size.
The melting temperature of a PCR primer can be changed by

varying its length or repositioning the targeted region to alter
the primer sequence. In the case of targeted region primers the
3′ position is fixed, somelting temperature can only be controlled
by changing the length from the 5′ end.
For a primer with a length that may vary by size l and a start

position that may vary by size s, there are l*s possible sequences
to consider. In the default case, a 100 ± 15% bp amplicon with a
primer length of 16−30, this gives 450 sequences. To increase
the speed of the optimization process, a simulated annealing
technique is applied as follows. We will refer to the “temperature”
of the algorithm as T, to avoid confusion with the target melting
temperature for the PCR reaction.

1. Construct an l*s empty matrix M.
2. Draw primers at random to calculate an initial T0.

2.a. A number of random uphill transitions are made.
2.a.i. Randomly select two adjacent coordinates

on M.
2.a.ii. Calculate themelting temperature of the primer

sequence with the corresponding length and
start position.

2.a.iii. The objective function score is based on the
target melting temperature tm, and defined as
f(t1,t2) = |tm − t1| − |tm − t2|. A positive score
indicates the second primer is closer to having
the desired melting temperature.

2.b. The average absolute value of the objective function
score, δ, is calculated.

2.c. The initial temperature is calculated with the
equation T0 =−δ/(ln P) where P is the initial accep-
tance probability, the fraction of uphill transitions
that are accepted. P begins low (50%) and increases
with time.

3. Begin at an initial coordinate at the center of M.
4. Iterate until an acceptable result or inescapable local maxi-

mum is found:
4.a. Select another coordinate by a random walk of

round [(w * (T0 − T)/(T0 − Tfinal)] steps from the
selected point, where w is some initial step size that
begins large (e.g., the length of the longest side ofM)
and will diminish with time.

4.b. Calculate themelting temperature of the primers cor-
responding to each coordinate and store them inM.

4.c. Calculate the score f(t1,t2) = |tm − t1| − |tm − t2|.
4.d. If f > 0, transition to the new coordinates with

probability e−f/T.
4.e. If the melting temperature of the selected primer is

within some threshold of the final target temper-
ature, return that primer and terminate.

4.f. After some number of iterations, reduce T. This
problem space is small enough that a simple linear
decrease is sufficient, such asT′=T− xT0 where x <1.

Table 1

RE0 α

mismatch 0.26 −0.135
insertion 0.15 −0.075
deletion 0.23 −0.058
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4.g. If T = Tfinal, locate the coordinate with the closest
melting temperature to the target, return the
corresponding primer and terminate.

MASC-PCR Primer Pool Generation. Primers in the
targeted region are under tighter constraints than in the non-
targeted region, so targeted region primers are created first by the
program. These should start at specific locations, placing the first
modified base of the mutated DNA sequence (or the corre-
sponding unmodified base) at the 3′ position to maximize
specificity. To preserve clarity of the barcode-type readout and
enable both species to use the same nontargeted region primer,
the wild type and mutant primers should have the same
orientation. The methodology Merlin uses to create the primer
pool is as follows.
Create targeted region primers:

1. For each oligo, four primer sequences will be generated.
These match mutant and wild type pairs of loci, in each
orientation.

2. The location of the 3′-most base on the primer depends on
the targeted mutation type. For missense mutations, the
location of the first (or last, depending on orientation)
modified base is used. For insertions, the first inserted
base is used. For deletions, the primer is positioned so that
the deleted region is 1/4 of the primer length away from
the 3′ end. Each mutant/wild type pair of primers uses the
same genomic coordinate for the 3′ base.

3. Optimize each of the primers as described in the previous
section, with the start position fixed.

4. If no pair of optimized primers has a melting temperature
outside of the acceptable range, select the pair that has the
lowest total difference from the target melting temper-
ature. If only one pair has a primer that does not fit within
the range, select the other pair. If both pairs are outside the
acceptable range, select the pair with the lowest maximum
difference from the target.

Create nontargeted region primers:

1. For the pair of targeted region primers selected at each
locus, and for each amplicon size specified by the user,
create an optimized primer either up or downstream of the
targeted region based on the orientation of the selected pair.

2. Construct m lists of length equal to the number of desired
amplicon sizes, such that m * n amplicons > n oligos.

3. For each set of primers corresponding to a single target,
if no primer is within the acceptable threshold of the target
melting temperature, select the primer that is closest and
store it in an empty spot corresponding to its length on
some list. If no lists have a vacancy, displace a primer that
remained inside the threshold. If this is not possible, create
a new list to occupy.

4. Fill the remaining empty slots in each list by searching the
primers whose target is not yet accounted for and that
correspond to the slot’s amplicon size, and choose the
primer with the closest melting temperature to the target.
To make the results easier to read, prioritize amplicon
lengths by skipping every second length at first to maxi-
mize the space between bands.

Validation Methods. For validation, we used strain EcNR21

and MAGE was performed as described previously.6 To identify
target loci randomly spaced around the genome, we analyzed the
E. coliMG1655 genome for AvrII restriction sites and identified
16. We chose seven of these AvrII restriction sites to target

because they occurred in noncoding regions or in genes where
silent mutations were possible, minimizing the chance of fitness
defects that would bias calculation of mutation efficiencies. Every
3 cycles, 50 μL of MAGEd culture diluted 1:10 000 was plated on
LB Lennox agar plates containing chloramphenicol or
carbenicillin (markers carried by ECNR2) to prevent contami-
nation. After growth overnight, 47 colonies were picked into a
96-well plate, with two wells containing ancestral strain to bench-
mark MASC-PCR primers on.
For genotyping with MASC-PCR, we used methods described

previously.7,12 PCR reactions were run according to Kapa
Biosystems Multiplex Mix specifications, with an annealing
temperature of 64.5 °C and extension time of 1 min for 28 cycles.

Infrastructure. The interface for Merlin is built using Vector-
Editor (available at https://github.com/JBEI/vectoreditor/),
an open source web based DNA sequence analysis and edit-
ing tool maintained by the Joint BioEnergy Institute (JBEI).17

Melting temperature calculations are obtained from the
Bio.SeqUtils.MeltingTemp module in BioPython16 (version 1.65
at the time of this submission). Free energy calculations are per-
formed with the RNAFold program (version 2.1.9 at the time of
this submission) from the ViennaRNA package from the Theo-
retical Biochemistry Group within the Institute for Theoretical
Chemistry at the University of Vienna, using the includedMathews
model for DNA energy parameters.14

Java, Python, and ActionScript source code for Merlin is avail-
able at the CIDAR Github repository (https://github.com/
CIDARLAB/) under the BSD 3-Clause License (http://
opensource.org/licenses/BSD-3-Clause).
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